课程已归档

Praktische Einführung in Deep Learning für Computer Vision

提供者 HPI-Student Team für neuronale Netze

本视频属于openHPI课程Praktische Einführung in Deep Learning für Computer Vision。你想看更多吗?

2.6 Aktivierungsfunktionen

时间效果趋于.12 分钟

An error occurred while loading the video player, or it takes a long time to initialize. You can try clearing your browser cache. Please try again later and contact the helpdesk if the problem persists.

关于这个视频


Anmerkung zum Video:

  • zu 4:26: Mathematisch korrekt muss von Operationen, statt Multiplikationen gesprochen werden. Die Berechnung der Aktivierungsfunktionen wurde hier nicht mit einbezogen.

  • Stetigkeit ist nicht gleichbedeutend mit der Erklärung "es gibt zu jedem x ein y", sondern eine Funktion ist stetig, wenn sie an jeder Stelle ihres Definitionsbereichs stetig ist. Die genaue Definition von Stetigkeit findet ihr hier.

  • Die Erklärung "Es gibt zu jeden x ein y" beschreibt die Totalität als Eigenschaft einer Funktion.

  • Auf Folie 9 müsste es statt softmax(x)_i eigentlich softmax(x_i) heißen