In allen Anwendungen in der Informatik steckt eine große Portion Mathematik. Insbesondere basieren viele Algorithmen, die uns täglich helfen (zum Beispiel Googles Suchalgorithmen oder Routenfindung bei Navigationssytemen) auf cleveren mathematische Einsichten. In diesem Kurs wird die Sprache der modernen Mathematik vorgestellt. In der ersten Woche werden wir dazu die grundlegenden Bausteine einführen; dabei wird es um Quantoren und Junktoren, sowie Formalisierungen und Spezifikationen gehen. In der zweiten Woche werden wir diese Themen anhand ausgewählter Beispiele (Wegfindung und Googles PageRank Algorithmus) anwenden. In der dritten Woche steigen wir dann etwas tiefer in die Mathematik und lernen mehrere Analysewerkzeuge kennen (z.B. die berühmte "O-Notation") Für diesen Kurs ist kein akademisches Vorwissen aus der Mathematik nötig. Teilnehmer des Kurses verstehen im Anschluss die mathematische Sprache und verstehen, wie diese bei algorithmischen Fragestellungen angewandt wird.
自学
语言: Deutsch

课程信息


In allen Anwendungen in der Informatik steckt eine große Portion Mathematik. Insbesondere basieren viele Algorithmen, die uns täglich helfen (zum Beispiel Googles Suchalgorithmen oder Routenfindung bei Navigationssytemen) auf cleveren mathematische Einsichten.

In diesem Kurs wird die Sprache der modernen Mathematik vorgestellt. In der ersten Woche werden wir dazu die grundlegenden Bausteine einführen; dabei wird es um Quantoren und Junktoren, sowie Formalisierungen und Spezifikationen gehen. In der zweiten Woche werden wir diese Themen anhand ausgewählter Beispiele (Wegfindung und Googles PageRank Algorithmus) anwenden. In der dritten Woche steigen wir dann etwas tiefer in die Mathematik und lernen mehrere Analysewerkzeuge kennen (z.B. die berühmte "O-Notation")

Für diesen Kurs ist kein akademisches Vorwissen aus der Mathematik nötig. Teilnehmer des Kurses verstehen im Anschluss die mathematische Sprache und verstehen, wie diese bei algorithmischen Fragestellungen angewandt wird.

Inhalt

  • Logikrätsel
  • Junktoren und Quantoren
  • Graphen als Datenstruktur
  • Wegfindealgorithmus
  • PageRank
  • Analyse von Algorithmen
  • O-Notation
  • Logarithmen

Eckdaten zum Kurs

  • Kurssprache: Deutsch
  • Kursstart: 10. September 2018
  • Kursende: 8. Oktober 2018
  • Kursdauer: 3 Wochen (+1 Prüfungswoche)
  • Arbeitsaufwand: 3-6 Stunden pro Woche

Vorausgesetzte Kenntnisse

  • Grundlegendes Mathematisches Verständnis
  • Logisches und konstruktives Denken

Kursniveau

  • Grundlagen

Zielgruppe

  • Jeder, der sich grundlegend mit Informatik beschäftigen möchte.
  • Schüler, die ein Studium mit stark mathematischem Bezug aufnehmen möchten.

Folgen Sie uns auf Twitter: @openHPI. Nutzen Sie den Hashtag #Algorithmik2018 für Tweets zu diesem Kurs.
Besuchen Sie uns auf Facebook: https://www.facebook.com/OpenHPI

Weitere Video Lectures finden Sie unter www.tele-task.de.

订阅本课程


如果您想注册该课程,没有正式的要求或限制。这些课程对所有人都是公开免费的。只需为自己在openHPI注册一个账号就可以开始课程!

现在注册吧

该课程自9月10日 到 10月01日 开设.

当前已注册学员数为6334.

证书要求


  • 课程证书 授予者需要至少取得课程总分的百分之 45%
  • 参与证明 授予者需要至少学习了所有课程资料的百分之 50%

欲知详情,请访问证书指南.

该课程提供者


Dr. Timo Kötzing

Timo Kötzing is postdoctoral researcher at the Algorithm Engineering group of the Hasso Plattner Institute (HPI). His research concerns the theory and application of randomized search heuristics, in particular evolutionary computation and swarm intelligence. He received his PhD in computer science from the University of Delaware, USA, in 2009 and was afterwards a research scientist at the Max Planck Institute for Informatics and at the University of Jena. Since June 2015 he works at the HPI.

Karen Seidel

Karen Seidel ist Doktorandin am Algorithm Engineering Lehrstuhl des Hasso-Plattner-Instituts (HPI). In ihrer Forschung im Bereich künstliche Intelligenz beschäftigt sie sich mit der Modellierung von Lernprozessen mittels Automaten und Turing-Maschinen. 2010 schloss sie ihr Mathematikstudium an der Universität Bonn ab, um anschließend in mathematischer Logik und kognitiver Mathematik an den Universitäten Münster, Osnabrück und Köln zu forschen. Sie verfügt über ein breites Spektrum pädagogischer Erfahrung und arbeitet seit April 2017 am HPI.

Dr. Pascal Lenzner

Pascal Lenzner is postdoctoral researcher at the Algorithm Engineering group of the Hasso Plattner Institute (HPI). His research focuses on the intersection of graph algorithms, networks and algorithmic game theory. After studies at the University of Jena and ETH Zurich, Switzerland, he received his PhD in computer science from Humboldt-University Berlin in 2014. Before joining HPI in October 2015, he worked as research scientist at the University of Jena.

Dr. Thomas Bläsius

Thomas Bläsius is postdoctoral researcher at the Algorithm Engineering group of the Hasso Plattner Institute (HPI), with his research centering around graph algorithms. Starting in 2006, he studied computer science at the Karlsruhe Institute of Technology (KIT), finishing in 2011 with a diploma. Afterwards, he did his PhD in computer science (also at the KIT), finishing in 2015. Since then, he is at his current position at the HPI.

帮助台

您报告的信息已递交至openSAP支持团队,我们将尽快解决您的问题。谢谢!

谢谢

系统错误

返回