Results for:English, Big Data and AI

Adjust

Self-paced courses

PD Dr. Haojin Yang, Weixing Wang, Jona Otholt, Zi Yang , Gregor Nickel , Dr. Zhitong Xiong, Constantin Le Cleï , Dr. Peng Yuan , Dr. Liangjing Zhang

Extreme weather events have caused severe damage and loss of life in recent decades. Traditional numerical weather prediction, while accurate, is computationally intensive—requiring supercomputers that consume massive amounts of energy. In contrast, energy-efficient AI offers a transformative alternative. This course explores how modern AI models can drastically reduce energy consumption and CO₂ emissions while improving the accuracy and accessibility of weather forecasting. Through practical examples, we demonstrate how techniques like LoRA fine-tuning, diffusion models, and GNSS-based sensing can enhance forecasting capabilities on both large and personal devices. By the end of this course, learners will understand how efficient AI methods enable sustainable, high-precision weather prediction for the future.

  • Self-paced since Dec 17, 2025
  • Big Data and AI
  • Record of Achievement
  • en
  • de, en
Mario Tormo Romero

In this course, you’ll learn how to work with time series data — one of the most common and challenging types of data across industries. We’ll start from the basics, introducing you to key concepts like trends, seasonality, and stationarity, and gradually move into more advanced forecasting techniques. You’ll explore both classical statistical models and modern machine learning approaches, and see how deep learning architectures like RNNs, LSTMs, and transformers are being used for cutting-edge forecasting tasks today. Along the way, we’ll cover real-world examples from finance, healthcare, weather forecasting, and beyond. By the end of the course, you’ll have the skills to analyze time series data, build reliable forecasting models, and apply them to practical problems.

  • Self-paced since Oct 1, 2025
  • Big Data and AI, Data Science
  • Record of Achievement
  • en
  • de, en
Antonio Rueda-Toicen

Practical Computer Vision in PyTorch is a comprehensive, hands-on course for developers and practitioners eager to explore computer vision with PyTorch. It spans image classification, object detection, segmentation, and generative modeling. Emphasizing implementation, participants work through coding demos and projects with industry-standard tools and libraries. By the end, they will be able to build and fine-tune computer-vision models for real-world applications.

  • Self-paced since May 21, 2025
  • Big Data and AI, Data Science
  • Record of Achievement
  • en
  • de, en
Vanessa Parli
Welcome to the "Sustainability in the Digital Age" series

Artificial Intelligence (AI) offers transformative potential across industries, but its development and deployment come with environmental costs. The course covers topics such as the carbon footprint of AI models, methods for measuring and reporting environmental impacts, and challenges in estimating the sustainability of AI technologies. Students will gain insights into energy and carbon accounting, along with case studies demonstrating how AI’s environmental footprint is assessed. The course aims to provide a comprehensive understanding of the relationship between AI and the environment, equipping learners with knowledge to contribute to more sustainable AI practices.

This course is part of the Sustainability in the Digital Age series, a collaborative project between colleagues from Stanford University, SAP and the Hasso Plattner Institute.

  • Self-paced since Mar 18, 2025
  • Big Data and AI
  • Record of Achievement
  • en
  • de, en
Elizabeth Press

This course explores the hype and realities surrounding AI, the challenges companies face in using AI profitably, and how Germany is performing in the AI landscape. It offers insights into how AI can power business strategies, be successfully integrated into operations, and scaled for long-term profitable growth. Created for managers and data experts looking to maximize AI’s potential, the course requires no prior experience, though a basic understanding of business strategy, data analytics, and AI concepts is beneficial.

  • Self-paced since Dec 23, 2024
  • Big Data and AI
  • Record of Achievement
  • en
  • de, en
AI Service Center Team

Gain a basic understanding of how numerical representations transform language! Explore the world of text embeddings in this online course, covering essential topics such as tokenization, historical models, modern techniques, and practical applications.

It's free of charge and no prior AI experience is necessary.

  • Self-paced since Dec 24, 2023
  • Big Data and AI, Data Science
  • Confirmation of Participation
  • en
  • en
Prof. Dr. Harald Sack

Despite the fact that it affects our lives on a daily basis, most of us are unfamiliar with the concept of a knowledge graph. When we ask Alexa about tomorrow's weather or use Google to look up the latest news on climate change, knowledge graphs serve as the foundation of today's cutting-edge information systems. In addition, knowledge graphs have the potential to elucidate, assess, and substantiate information produced by Deep Learning models, such as Chat-GPT and other large language models. Knowledge graphs have a wide range of applications, including improving search results, answering questions, providing recommendations, and developing explainable AI systems. In essence, the purpose of this course is to provide a comprehensive overview of knowledge graphs, their underlying technologies, and their significance in today's digital world.

  • Self-paced since Nov 21, 2023
  • Big Data and AI
  • Record of Achievement
  • en
  • en
AI Service Center Team

On 11th July, 2023, the first KISZ workshop on "Pre-trained AI Models: The speech-to-summary example" takes place. The contents of the workshop will be prepared in this Background Talk format, which is open to all interested parties.

  • Self-paced since Sep 30, 2023
  • Big Data and AI
  • en
Prof. Dr. Shravan Vasishth, Dr. Anna Laurinavichyute

Bayesian data analysis is increasingly becoming the tool of choice for many data-analysis problems.

This free course on Bayesian data analysis will teach you basic ideas about random variables and probability distributions, Bayes' rule, and its application in simple data analysis problems. You will learn to use the R package brms (which is a front-end for the probabilistic programming language Stan). The focus will be on regression modeling, culminating in a brief introduction to hierarchical models (otherwise known as mixed or multilevel models).

This course is appropriate for anyone familiar with the programming language R and for anyone who has done some frequentist data analysis (e.g., linear modeling and/or linear mixed modeling) in the past.

  • Self-paced since Mar 13, 2023
  • Big Data and AI
  • Record of Achievement
  • en
  • de, en
Dr. Christa Zoufal, Julien Gacon, Dr. David Sutter

Whether we stream our favorite series, develop new drugs or have us being chauffeured by a self-driving car -- machine learning is an essential part of our modern life, and of our future. But the growing amount of data and our increasing demands pose difficulties for today's classical computers. Can quantum computing overcome these challenges? What potentials does the emerging field of quantum machine learning have?

In this course, we will not only learn about quantum machine learning and its prospects, but we will also solve concrete tasks with both classical and quantum models. This course is aimed at students, experts and enthusiasts of quantum computing or machine learning. Prior knowledge about quantum computing or quantum information are strongly recommended.

  • Self-paced since Jan 26, 2023
  • Big Data and AI, Quantum Computing
  • Record of Achievement
  • en
  • de, en
clean-IT Initiative

Digitalization is a game changer in the pursuit of a sustainable future. The latest digital technologies and applications like cloud, AI, and mobile devices enable us to achieve the Sustainable Development Goals and reduce carbon emissions in many sectors. Yet computer systems themselves have an immense energy requirement for their countless devices, data centers, applications and global networks. To effectively reduce the carbon footprint of digitalization, it is necessary to apply algorithmic efficiency and sustainability by design as guiding principles in digital engineering. The clean-IT Forum is the international platform to exchange ideas, recent research findings and applications to make digital technologies more energy-efficient.

  • Self-paced since Mar 31, 2021
  • Big Data and AI, Cloud and Operating Systems
  • Confirmation of Participation
  • en
  • de, en