Quantenalgorithmen und -implementierung Teil 2 und 3

Seitdem wir experimentell beweisen können, dass Quantencomputer in bestimmten Anwendungen klassischen Computern um ein Tausendfaches überlegen sind, hat ein regelrechter Wettlauf um die Schlüsseltechnologie der Zukunft zwischen großen Playern wie IBM, Google und Amazon begonnen. Mit Qiskit können Menschen auf der ganzen Welt remote auf einen Quantencomputer von IBM zugreifen und Algorithmen ausprobieren. Es ist nur eine Frage der Zeit, bis die Hardware so ausgereift ist, dass sie auch in der Praxis zum Einsatz kommt. In diesem Kurs lernen Sie nicht nur, wie Quantenalgorithmik theoretisch gehen könnte, sondern wie sie tatsächlich funktioniert und führen Algorithmen auf dem IBM-Quantencomputer selbst aus. Machen Sie sich fit für die Schlüsseltechnologie der Zukunft. Diese Kurse knüpfen an „Quantenalgorithmen und Implementierung - Teil 1“ an und führen den dort begonnenen Weg fort.

Seit 25. Juli 2023 im Selbststudium
Kurssprache: Deutsch
Advanced, Quantum Computing

Kursinformationen

Was Sie in diesem Kurs erwartet

Sie lernen in Teil 2 weitere berühmte Algorithmen des Quantencomputings kennen – Bernstein-Vaziriani Algorithmus, Simons Algorithmus, die Quanten Fouriertransformation und den Shor-Algorithmus und deren Umsetzung in Qiskit. Mit diesen Algorithmen lässt sich dann z.B. beim Problem der Primfaktorzerlegung ein exponentieller Speed-Up gegenüber der klassischen Lösung zeigen.

Eine weitere Anwendung dieser Algorithmen stellt das Quanten Monte-Carlo Verfahren dar, das in Teil 3 eingeführt wird. Dieses Verfahren wird zukünftig – sobald genügend fehlerkorrigierte Qubits vorhanden sind – einen quadratischen Speedup von einer Reihe wichtiger Berechnungsverfahren z.B. in Finance ermöglichen. Des Weiteren werden in diesem Kurs Algorithmen vorgestellt, die nicht erst auf zukünftigen Quantensystemen eine Rolle spielen könnten, sondern bereits heute erkundet werden: Das sind die sog. variationellen Quantenalgorithmen, die im Bereich der Optimierung aber auch im Bereich des Maschinellen Lernens eingesetzt werden können.

Bei allen Algorithmen lernen Sie sowohl die theoretischen Details, aber auch die Umsetzung in Qiskit bzw. in PennyLane.

Um an dem Kurs erfolgreich teilzunehmen, rechnen Sie mit 3-5 Stunden Arbeitsaufwand pro Kurswoche. Wir empfehlen allerdings, weitere 2-3 Stunden für die weitergehende Auseinandersetzung mit den Beispielen und das eigene Ausprobieren.

Für diesen Kurs sollten Sie einige Vorkenntnisse mitbringen. Alles, was vorausgesetzt wird, können Sie aber auch auf Kursen auf openHPI kostenlos im Selbststudium nachholen oder auffrischen. Insbesondere benötigen Sie:

Was Teilnehmende lernen werden

  • vertieftes Verständnis von Quantenalgorithmen
  • Anwendung berühmter Algorithmen in Qiskit

Für wen dieser Kurs gedacht ist

  • Programmierinteressierte
  • Menschen mit Vorkenntnissen in linearer Algebra
  • Menschen mit Vorkenntnisse im Programmieren (v.a. Python)
  • Alle, die in Bereichen wie High Performance Computing, Telekommunikation und IT-Sicherheit arbeiten

Lernmaterial

  • Intro:

    Willkommen zum Kurs! Bitte nehmen Sie sich ein paar Minuten Zeit für die Umfrage zum Kursbeginn.
  • Teil 1 - Woche 1: weitere Algorithmen:

    In der ersten Woche betrachten den Bernstein-Vaziriani Algorithmus, Simons Algorithmus, die die Quanten Phase Estimation und die Quanten Fouriertransformation. Diese legen die Grundlage für die zweite Woche.
  • Teil 2 - Woche 2: Anwendung der Algorithmen:

    In Woche 2 wird mit den besprochenen Algorithmen der Shor-Algorithmus für die Primfaktorzerlegung vorgestellt. Des Weiteren wird Anwendung der HHL-Algorithmus für die Lösung linearer Gleichungssysteme diskutiert.
  • Teil 3 - Woche 1: Quanten Monte-Carlo Simulation und Optimierung :

    In der ersten Woche erfolgt die Darstellung der Quanten Monte-Carlo Simulation. Dieses Verfahren greift einige der besprochenen Algorithmen auf und erlaubt eine effizientere Berechnung von für die Praxis wichtigen Simulationsverfahren. Als weitere Anwendung von Quantenalgorithmen werden dann Optimierungsprobleme diskutiert.
  • Teil 3 - Woche 2: Anwendung der Algorithmen:

    In der letzten Woche wird ein möglicher Brückenschlag vom maschinellen Lernen zum Quanten-maschinellen Lernen eingeführt und anhand eines Beispieldatensatzes explizit vorgeführt. Eine Ausblick auf aktuelle Themen rund um Quantencomputing schließt den Kurs ab.
  • Abschlussprüfung

  • I like, I wish

Für diesen Kurs einschreiben

Der Kurs ist kostenlos. Legen Sie sich einfach ein Benutzerkonto auf openHPI an und nehmen Sie am Kurs teil!
Jetzt einschreiben

Lernende

Aktuell
Heute
651
Kursende
25. Juli 2023
507
Kursstart
14. Juni 2023
302

Bewertungen

Der Kurs wurde mit durchschnittlich 4.64 Sternen bei 11 abgegebenen Stimmen bewertet.

Anforderungen für Leistungsnachweise

  • Den Leistungsnachweis erhält, wer in der Summe aller benoteten Aufgaben mindestens 50% der Höchstpunktzahl erreicht hat.
  • Die Teilnahmebestätigung erhält, wer auf mindestens 50% der Kursunterlagen zugegriffen hat.

Mehr Informationen finden Sie in den Richtlinien für Leistungsnachweise.

Dieser Kurs wird angeboten von

Prof. Dr. Gerhard Hellstern

Gerhard Hellstern (Prof., Dr. rer. nat, Diplom-Physiker, *1971) ist seit 2018 Professor an der Fakultät Wirtschaft der Dualen Hochschule Baden-Württemberg in Ravensburg. Von 1990 - 1995 studierte er Physik an der Universität Tübingen und der State University of New York at Stony Brook; 1998 promierte er zum Dr. rer.nat. Von 1998 bis 2018 war er zunächst bei der Deutschen Bank, der GZB-Bank und anschliessend 17 Jahre bei der Deutschen Bundesbank, Hauptverwaltung Stuttgart beschäftigt. Dort leitete er über viele Jahre den Bereich Bankgeschäftliche Prüfungen. Gerhard Hellstern beschäftigt sich seit vielen Jahren mit der Anwendung von Data-Science Methoden (Data Analytics sowie Machine und Deep Learning) im Finanzbereich. Diese Methoden umfassen auch das Quantum Computing sowie das darauf aufbauende Quantum Machine Learning. Er ist Qiskit-Advokat bei IBM und Mitglied des Forschungsnetzwerks Quantum Computing der Fraunhofer Gesellschaft.