Curso al ritmo de cada uno

Einführung in die Mathematik der Algorithmik

Impartido por Dr. Timo Kötzing, Dr. Pascal Lenzner, Dr. Thomas Bläsius, Karen Seidel

An error occurred while loading the video player, or it takes a long time to initialize. You can try clearing your browser cache. Please try again later and contact the helpdesk if the problem persists.

In allen Anwendungen in der Informatik steckt eine große Portion Mathematik. Insbesondere basieren viele Algorithmen, die uns täglich helfen (zum Beispiel Googles Suchalgorithmen oder Routenfindung bei Navigationssytemen) auf cleveren mathematischen Einsichten.

In diesem Kurs wird die Sprache der modernen Mathematik vorgestellt. In der ersten Woche werden wir dazu die grundlegenden Bausteine einführen; dabei wird es um Quantoren und Junktoren, sowie Formalisierungen und Spezifikationen gehen. In der zweiten Woche werden wir diese Themen anhand ausgewählter Beispiele (zum Beispiel Logarithmengesetze und Landau-Notation) anwenden.

Für diesen Kurs ist kein akademisches Vorwissen aus der Mathematik nötig.

Desde octubre 2, 2017 en modo autodidacta
Idioma: Deutsch
Advanced, Fundamentals

Información del curso

In allen Anwendungen in der Informatik steckt eine große Portion Mathematik. Insbesondere basieren viele Algorithmen, die uns täglich helfen (zum Beispiel Googles Suchalgorithmen oder Routenfindung bei Navigationssytemen) auf cleveren mathematischen Einsichten.

In diesem Kurs wird die Sprache der modernen Mathematik vorgestellt. In der ersten Woche werden wir dazu die grundlegenden Bausteine einführen; dabei wird es um Quantoren und Junktoren, sowie Formalisierungen und Spezifikationen gehen. In der zweiten Woche werden wir diese Themen anhand ausgewählter Beispiele (zum Beispiel Logarithmengesetze und Landau-Notation) anwenden.

Für diesen Kurs ist kein akademisches Vorwissen aus der Mathematik nötig.

Contenido del curso

  • Woche 1:

    Aussagen- und Prädikatenlogik, sowie Graphen.
  • Woche 2:

    Münzwiegen, kürzeste Pfade und PageRank.
  • Abschlussprüfung

  • I like, I wish

Matricularme en este curso

El curso es gratuito. Solo tiene que crear una cuenta en openHPI ¡y ya puede hacer el curso!
Matricularme ahora

Learners

Current
Today
10.473
Course End
oct 02, 2017
7.351
Course Start
sep 18, 2017
6.428

Valoración

Este curso se ha valorado con 4.35 estrellas de media a partir de 49 votos.

Requisitos para el certificado

  • Obtenga un certificado de estudios al obtener más del 25% del número máximo de puntos de todos los trabajos evaluados.
  • Obtenga una confirmación de participación al completar al menos el 50% del material del curso.

Para saber más, consulte la guía de certificados.

Curso impartido por

Dr. Timo Kötzing

Timo Kötzing is postdoctoral researcher at the Algorithm Engineering group of the Hasso Plattner Institute (HPI). His research concerns the theory and application of randomized search heuristics, in particular evolutionary computation and swarm intelligence. He received his PhD in computer science from the University of Delaware, USA, in 2009 and was afterwards a research scientist at the Max Planck Institute for Informatics and at the University of Jena. Since June 2015 he works at the HPI.

Dr. Pascal Lenzner

Pascal Lenzner is postdoctoral researcher at the Algorithm Engineering group of the Hasso Plattner Institute (HPI). His research focuses on the intersection of graph algorithms, networks and algorithmic game theory. After studies at the University of Jena and ETH Zurich, Switzerland, he received his PhD in computer science from Humboldt-University Berlin in 2014. Before joining HPI in October 2015, he worked as research scientist at the University of Jena.

Dr. Thomas Bläsius

Thomas Bläsius is postdoctoral researcher at the Algorithm Engineering group of the Hasso Plattner Institute (HPI), with his research centering around graph algorithms. Starting in 2006, he studied computer science at the Karlsruhe Institute of Technology (KIT), finishing in 2011 with a diploma. Afterwards, he did his PhD in computer science (also at the KIT), finishing in 2015. Since then, he is at his current position at the HPI.

Karen Seidel

Karen Seidel is a PhD student in the Research Group for Algorithm Engineering at the Hasso-Plattner-Institute (HPI) in Potsdam, Germany. Her previous research in Artificial Intelligence focuses on modelling learning with Automata and Turing Machines. She graduated from the University of Bonn with a master in mathematics and worked in Mathematical Logic and Cognitive Mathematics at the Universities of Münster, Osnabrück and Cologne. She has wide-ranging experience in teaching and works at the HPI since 2017.