Kurs im Selbststudium
Despite the fact that it affects our lives on a daily basis, most of us are unfamiliar with the concept of a knowledge graph. When we ask Alexa about tomorrow's weather or use Google to look up the latest news on climate change, knowledge graphs serve as the foundation of today's cutting-edge information systems. In addition, knowledge graphs have the potential to elucidate, assess, and substantiate information produced by Deep Learning models, such as Chat-GPT and other large language models. Knowledge graphs have a wide range of applications, including improving search results, answering questions, providing recommendations, and developing explainable AI systems. In essence, the purpose of this course is to provide a comprehensive overview of knowledge graphs, their underlying technologies, and their significance in today's digital world.
A knowledge graph is a structured representation of knowledge that is used to provide a comprehensive and interconnected view of a specific domain. In this course we will discuss the key features and characteristics of knowledge graphs. You will learn all what is necessary to design, implement, and apply knowledge graphs. The focus of this course will be on basic semantic technologies including the underlying principles of knowledge representation and symbolic AI. This includes information encoding via RDF triples, knowledge representation via ontologies with OWL, efficiently querying knowledge graphs via SPARQL, latent representation of knowledge in vector spaces, as well as knowledge graph applications in innovative information systems, as e.g., semantic and exploratory search. Furthermore the role of knowledge graphs in artificial intelligence and machine learning will be discussed, as well as their potential to improve explainability and trustworthiness of "black box" deep learning models such as Chat-GPT.
Der Kurs wurde mit durchschnittlich 4.36 Sternen bei 106 abgegebenen Stimmen bewertet.
Mehr Informationen finden Sie in den Richtlinien für Leistungsnachweise.
Harald Sack ist Professor für Information Services Engineering bei FIZ Karlsruhe - Leibniz-Institut für Informationsinfrastruktur und Karlsruher Institut für Technologie. Nach dem Abschluss seines Informatikstudiums an der Universität der Bundeswehr München im Jahr 1990 arbeitete er von 1990 bis 1997 als System-/Netzwerkingenieur und Projektleiter im Fernmeldeaufklärungsdienst der Bundeswehr. Im Jahr 1997 wurde er assoziiertes Mitglied des Graduiertenprogramms 'Mathematische Optimierung' an der Universität Trier, wo er 2002 in Informatik promovierte. Von 2002-2009 arbeitete er als PostDoc an der Friedrich-Schiller-Universität in Jena. Von 2009 bis 2016 arbeitete er als Senior Researcher und Leiter der Forschungsgruppe 'Semantische Technologien' am Hasso-Plattner-Institut für IT-Systemtechnik (HPI) an der Universität Potsdam.
Seine Forschungsgebiete umfassen semantische Technologien, Wissensgraphen und Wissensrepräsentationen, Ontological Engineering, Wissensextraktion, maschinelles Lernen, semantische und explorative Suche.
Er ist Gründungsmitglied und Generalsekretär des 2008 gegründeten Deutschen IPv6-Rates. Er war als Senior PC-Mitglied oder PC-Mitglied zahlreicher internationaler Konferenzen und Workshops im Bereich semantischer Technologien sowie als Programmleiter, wissenschaftlicher Leiter oder allgemeiner Leiter tätig.
Harald Sack hat mehr als 200 Artikel in internationalen Zeitschriften und Konferenzen veröffentlicht, darunter drei Standardlehrbücher über Netzwerktechnologien. Er ist Mitbegründer der yovisto GmbH (www.yovisto.com).