课程已归档

Künstliche Intelligenz und maschinelles Lernen für Einsteiger

提供者 Johannes Hötter, Christian Warmuth (Masterstudenten)

An error occurred while loading the video player, or it takes a long time to initialize. You can try clearing your browser cache. Please try again later and contact the helpdesk if the problem persists.

Hier lernen Jugendliche und andere Interessierte ohne Programmier-Erfahrung und technisches Hintergrund-Wissen, die Welt des maschinellen Lernens und der künstlichen Intelligenz zu verstehen. Wir führen Sie dazu in die grundlegenden Konzepte ein. Dabei erfahren Sie, wo die Unterschiede zwischen herkömmlicher Programmierung und der Entwicklung selbstlernender Software liegen. Anhand von Beispielen erfahren Sie, was überwachtes, nicht überwachtes und verstärkendes Lernen sind. Denn diese Konzepte bilden den Kern für die Algorithmen, welche das maschinelle Lernen bewirken. Erleben Sie anhand einer konkreten Anwendung, wie mit einem solchen Lernprozess Muster und Strukturen in großen Datenmengen erkannt werden können. Auch auf ethische Fragen beim Einsatz künstlicher Intelligenz sowie die Begrenzungen der Technologie maschinellen Lernens wird in dem vierwöchigen Gratis-Kurs eingegangen. Geleitet wird er von den Masterstudenten Johannes Hötter und Christian Warmuth.

Im Folgekurs “Künstliche Intelligenz und Maschinelles Lernen in der Praxis” werden die Inhalte des ersten Kurses mit praktischen Anwendungsbeispielen vertieft. Der Kurs behandelt alle Schritte eines KI-Projektes von der ersten Sicht auf die Daten, über das Training des jeweils verwendeten ML-Modells bis hin zur Ergebnisanalyse und Interpretation.

自十月 6, 2020起开始自学
语言: Deutsch
Beginner, Big Data and AI, Junior

课程信息

Obwohl viel diskutiert, sind neuste Technologien wie künstliche Intelligenz und maschinelles Lernen den meisten noch ein Buch mit sieben Siegeln. Das will unser openHPI-Kurs für Einsteiger ändern. Schülerinnen und Schüler, aber auch interessierte Erwachsene sollen die zugrundeliegenden Konzepte kennen und verstehen lernen. Angesprochen sind alle, die noch keine Programmiererfahrung oder technisches Hintergrundwissen haben.

Die Kursleiter Johannes Hötter und Christian Warmuth steigen anschaulich in das Thema ein, indem sie die Unterschiede herausarbeiten, die es zwischen herkömmlichem „Coden“ und der Entwicklung selbstlernender Programme gibt. Erläutert wird an Beispielen, wie überwachtes (supervised), nicht überwachtes (unsupervised) und verstärkendes (reinforcement) Lernen die Algorithmen des „machine learning“ im Kern bestimmen.

Dann bekommen die Teilnehmenden an einem konkreten Beispiel überwachten Lernens vorgeführt, wie ein solcher Prozess aussehen kann – einer, der Muster und Strukturen in großen Datenmengen besser erkennen kann als einer mit herkömmlicher Programmierung.

Zum Abschluss des vierwöchigen Onlinekurses geht es um Zukunftsperspektiven von Anwendungen künstlicher Intelligenz, um ethische Fragestellungen und um Begrenzungen maschinellen Lernens.

Nicht auf dem Lehrplan dieses Kurses steht die eigenhändige Entwicklung selbstlernender Algorithmen und das Erlernen der Programmiersprache Python.

Zielgruppe

Der Onlinekurs richtet sich an Schülerinnen und Schüler von Oberschulen, aber auch an interessierte Erwachsene ohne Programmiererfahrung und ohne technisches Hintergrundwissen.

Kursstruktur

  • Woche 1: Wesentliche Unterschiede herkömmlicher Programmierung und der Entwicklung selbstlernender Programme
  • Woche 2: Grundlegende Konzepte überwachten, nicht überwachten und verstärkenden Lernens, Unterschiede in der Datenbereitstellung, konkreter Anwendungsfall
  • Woche 3: Einführung in den Prozess, wie ein selbstlernender Algorithmus im Rahmen überwachten Lernens zum Beispiel Muster erkennen kann
  • Woche 4: Ausblick auf das Fortschrittstempo bei künstlicher Intelligenz, Diskussion wesentlicher ethischer Grundsätze

Arbeitsaufwand

Für das Durcharbeiten von Lehr-Videos, Selbsttests, Hausaufgaben und Prüfungen sowie für die Diskussion des Stoffs im Kursforum mit den anderen Lernenden und dem Kursleiter-Team sollten die Teilnehmenden von einem Zeitaufwand von 3 bis 6 Stunden pro Woche ausgehen.

Hinweise auf weitere Kurse zur Thematik

Beachten Sie auch unseren openHPI-Kurs „Praktische Einführung in Deep Learning für Computer Vision“. Hierin geht es um die Frage, wie man eigenhändig neuronale Netze anlegen und für Anwendungen künstlicher Intelligenz einsetzen kann, um dem Computer das „Sehen“ beizubringen.

Im Folgekurs “Künstliche Intelligenz und Maschinelles Lernen in der Praxis” werden die Inhalte des ersten Kurses mit praktischen Anwendungsbeispielen vertieft. Der Kurs behandelt alle Schritte eines KI-Projektes von der ersten Sicht auf die Daten, über das Training des jeweils verwendeten ML-Modells bis hin zur Ergebnisanalyse und Interpretation.

课程内容

  • Woche 1:

    Wesentliche Unterschiede herkömmlicher Programmierung und der Entwicklung selbstlernender Programme
  • Woche 2:

    Grundlegende Konzepte überwachten, nicht überwachten und verstärkenden Lernens, Unterschiede in der Datenbereitstellung, konkreter Anwendungsfall
  • Woche 3:

    Einführung in den Prozess, wie ein selbstlernender Algorithmus im Rahmen überwachten Lernens zum Beispiel Muster erkennen kann
  • Woche 4:

    Ausblick auf das Fortschrittstempo bei künstlicher Intelligenz, Diskussion wesentlicher ethischer Grundsätze
  • Abschlussprüfung:

    Die Abschlussprüfung findet während Kurswoche 4 statt.
  • I like, I wish

重启本课程

您可以访问所有评分测试并在最后获得课程证书,通过 重启课程. 页面了解更多

订阅本课程

该课程是免费的。 只需在openHPI上注册一个帐户并参加课程!
现在注册吧

Learners

Current
Today
21,852
Course End
10月 06 2020
11,284
Course Start
9月 08 2020
9,268

评分

本课程已由151位用户进行了五分制评分,平均得分为4.73

证书要求

  • 课程证书 授予者需要至少取得课程总分的百分之 50%
  • 参与证明 授予者需要至少学习了所有课程资料的百分之 50%
  • 完成课程可获得开放徽章

欲知详情,请访问证书指南.

该课程提供者

Johannes Hötter

Johannes Hötter hat am Hasso Plattner Institut Data Engineering studiert, und zuvor Wirtschaftsinformatik an der Hochschule Bonn-Rhein-Sieg. Er ist spezialisiert auf Künstliche Intelligenz für Texte, Dokumente und Sprache, und hat die Softwarefirma Kern AI mitgegründet.

Christian Warmuth

Christian Warmuth is a graduate of the Master's program in Data Engineering at the Hasso Plattner Institute. He earned his Bachelor's degree in Business Informatics in Mannheim in cooperation with SAP. After an extended stay in Silicon Valley, Christian developed a passion for the field of Artificial Intelligence and Machine Learning. Since then, he has been deeply involved in these topics in his free time as well as in professional and academic contexts.

Currently, Christian is working as an AI Engineer at SAP Signavio within the realm of Innovation Office & Strategic Projects. In this capacity, he focuses on bridging the gap between business processes and machine learning applications.

Christian publishes a blog and newsletter about innovation and artificial intelligence on unhyped.io.