Applied Edge AI: Deep Learning Outside of the Cloud

Compared to Cloud Computing, which is centralized in computing and data storage, Edge Computing brings computation and data storage closer to data sources.

Edge AI combines edge computing and AI technology and has become a rapidly developing field in the past few years. Edge AI enables AI computing directly on the edge or client device, enhancing power efficiency, supporting low latency, and solving data privacy problems.

Therefore, what improvements need to be made to traditional deep learning algorithms in Edge AI scenarios? This course teaches you about deep model compression and optimization techniques, decentralized and collaborative deep learning approaches and algorithms, software, and hardware for Edge AI.

Вересня 6, 2022 - Жовтня 25, 2022
Мова: English
Advanced, Big Data and AI, Cloud and Operating Systems

Інформація про курс

What will you learn?

  • Summary of deep learning basics relevant for this course
  • Deep model compression and optimization techniques
  • Decentralized and collaborative deep learning
  • Algorithms, software and hardware for Edge AI

Is this course for me?

Prerequisites

  • High school math is required (pre-course)
  • Basics in Machine Learning and Deep Learning
  • Python as programming language

The German MOOC Praktische Einführung in Deep Learning für Computer Vision teaches relevant basics regarding Deep Learning and Computer Vision. Unfortunately we did not find a fitting English alternative.

Level
Advanced

Time required
6-8 hours per week

How do I get started?

Environment setup (or what you'll need for our practical examples)

  • A Webbrowser (preferably on a laptop or desktop computer)
  • A Kaggle account (we will do all coding exercises using Kaggle Notebooks)

Зарахувати мене на цей курс

Курс є безкоштовним. Просто зареєструйте обліковий запис на openHPI та пройдіть курс!
Зарахувати мене зараз
Зараховані слухачі: 608

Вимоги до сертифіката

  • Отримайте Відомість досягнень, набравши не менше 50% від максимальної кількості балів за всі оцінювані завдання.
  • Отримайте Підтвердження участі, виконавши не менше 50% матеріалу курсу.

Для отримання додаткової інформації див. інструкцію з отримання сертифіката.

Цей курс запропонований

PD Dr.  Haojin Yang

Haojin Yang is a senior researcher and multimedia and machine learning (MML) research group leader at Hasso-Plattner-Institute (HPI). Since 2019, he has been habilitated for a professorship. His research focuses on efficient deep learning, model acceleration and compression, and Edge AI.

Joseph Bethge

Joseph Bethge is a PhD student studying deep learning techniques in the area of Computer Vision with a focus on Binary Neural Networks (BNNs) and is one of the main authors of the Open-Source framework BMXNet 2 for BNNs.